

AFHER EUROBELT S.A.

Topacio, 41 47012 Valladolid (Spain) Tel.: +34 983 217 480 afher@eurobelt.com www.eurobelt.com

TECHNICAL DATA SHEET (TDS)

Version [05/2025]

Belt pitch	40 mm
Belt width	Multiples of 10 mm
Rod diameter	6 mm
Drive system	Central
Ø min direct rotation roller	55 mm
Ø min reverse rotation roller	150 mm

It has the same basis structure than SERIES E40, but some projecting ribs have been added on its whole surface in which the fingerplates teeth get linked at the infeed and the outfeed of the conveyor.

This conveyor belt, combined with the finger plates, provides a transfer system that avoids the overturning of the recipients.

Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (C°)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system	
Raised Rib	PP-Polypropylene	PP-Polypropylene	3600	11,98	+1 to +104	Grey	25%	22 mm	Con	
	PP - Green	rrolypropylerie	3690	11,98	+1 to +104	Green	Maximum [10x7,5]mm	22111111	Cap	

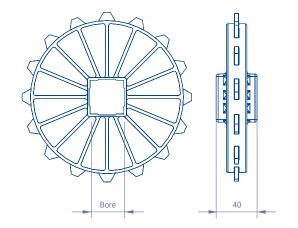
 ^{1}W = White G = Grey N = Natural B = Blue O = Black

Food use compliance

Declaration of Conformity (EU)

The substances used are included in the Positive Lists of the Legislation of plastic materials in contact with food, Regulation (EU) 10/2011 and its modifications.

Food and Drug Administration (FDA)


This regulation describes the polymers that can be safely used to manufacture articles that come into direct contact with food, 21CFR 177.1520 (Olefin polymers) and 21 CFR 177.2470 (Polyoxymethylene copolymer).

SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety and split sprockets to reduce maintenance time on replacements.

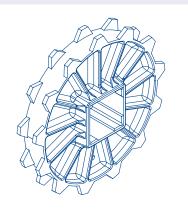
Nº teeth Z	Ø Pitch	Bore for square shaft		Hub width
		mm	inch	
8	104,5	40	1,5	40
10	129,4	40 - 60	1,5	40
13	167,1	40 - 60	1,5	40
16	205	40 - 60	1,5	40
20	255,7	40 - 60 - 90	1,5	40

^{*}Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel

*check availability in other materials

WITH KEYWAY

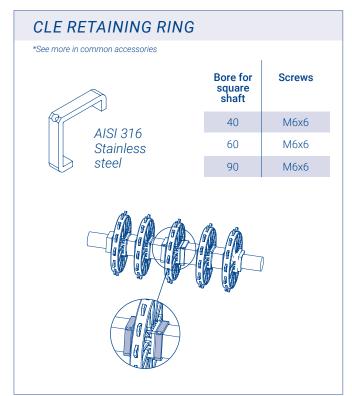

WITHOUT KEYWAY

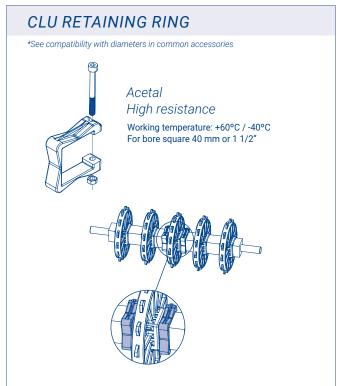
DOUBLE-TOOTHED SPROCKETS

Nº teeth Z	Ø Pitch	Bore for so	Bore for square shaft	
		mm	inch	
13D	167,1	40-60	1,5-2,5	40

It is manufactured in polypropilene and polyacetal

*check availability in other materials


RETAINING RINGS


Eurobelt retaining rings are used to secure the central gear on the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

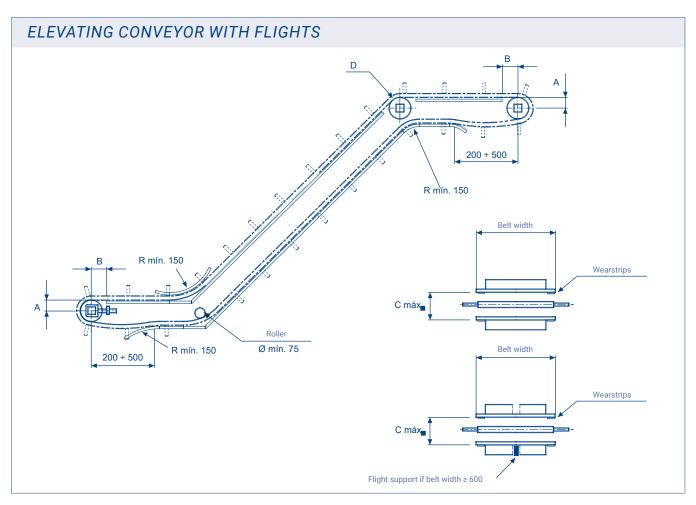
Additionally, the effects of temperature cause the belt to expand

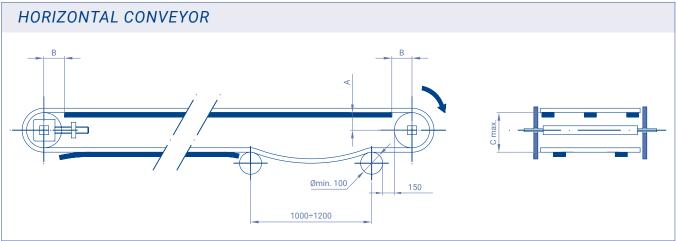
or contract.

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.

SPROCKETS AND WEARSTRIPS

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

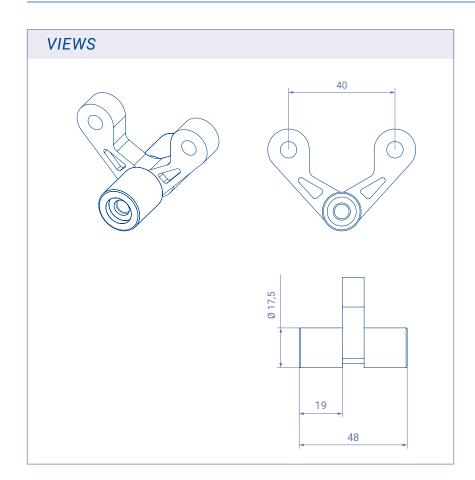

Minimum quantity = —	Belt width (mm)
Willimitian quantity - —	150 mm


This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.

		Minimum quantity of sprockets per shaft	Minimum quantity of wearstrips		
Belt nominal width (mm)		shaft	Transport way	Return way	
60	150	1	2	2	
160	450	3	2	2	
460	750	5	3	2	
760	1050	7	5	3	
1060	1350	9	6	4	
1360	1650	11	7	5	
1660	1950	13	9	6	
1960	2250	15	10	7	
2260	2550	17	11	8	
2560	2850	19	12	9	
2860	3150	21	14	10	
3160	3450	23	15	11	
3460	3750	25	16	12	
3760	4050	27	18	13	

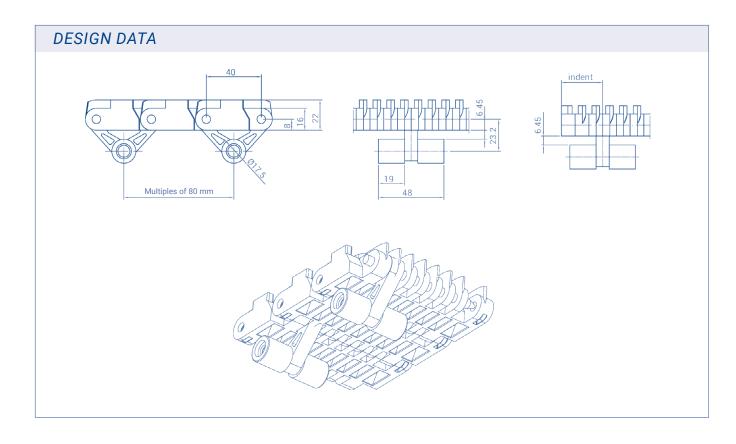


- [A] Distance between the sliding surface of the belt and the centre of the shaft.
- **[B]** Distance between the vertical of the shaft and the beginning of the sliding surface.
- **[C]** Distance between the sliding surface of the belt and the support of the return way.
- **[D]** If sprockets are used in the inflexion shaft, do not retain the central one.
- **[R]** This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

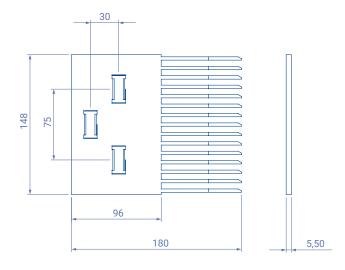
In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	A	B max.	C max.
8	104,5	43	45	105
10	129,4	56	55	130
13	167,1	75	70	165
13D	167,1	75	70	165
16	205,0	94	80	205
20	255,7	120	90	255

HOLD-DOWN ROLLERS


They are used to fasten the belt to the conveyor in all the inflexions.

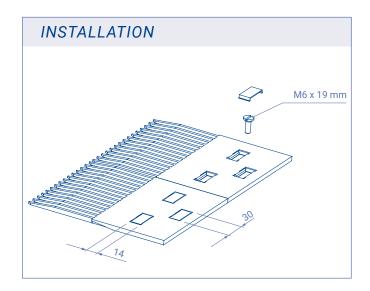
In applications in which the belt must be submerged, they are placed in the middle of the belt to prevent it from getting bent due to the flotation.

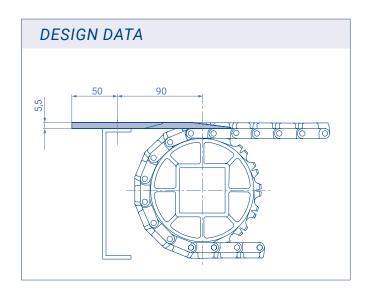

They will roll along rails fastened throughout the conveyor structure. It is recommended to place wearstrips to avoid the wear owing to rolling as far as possible.

The distance between the side edge of the belt and the centre of the hold-down roller (indent) must be a multiple of 5 mm. Hold-down rollers cannot be used with the following sprockets:

N° of teeth	Bore for square shaft
8	40
10	60

FINGER PLATES


They have been designed to be used with the Raised Rib belt in applications of intersection of lines in which it is necessary to transfer the product by means of finger plates.


The finger plates are manufactured in nylon and acetal. They have 15 teeth that hide among the projecting ribs of the belt, allowing the constant flow of product as the belt is engaged. They avoid the use of conventional dead plates and consequently the problems by stumbling and fall of the product.

They have two fastening holes that enable little displacements to achieve a better coupling with the belt. Those holes are located so that they reduce to the minimum the vibrations owing to the turn of the belt over the sprockets.

The finger plates can be easily installed in the structure of the conveyor putting a screw in each hole.

Material / Colours	N° of spikes	N° of fasteners
Nylon / black	15	2
Acetal / grey	13	3

