

Pitch	30 mm
Surface	Conic Friction
Open area	47%
Drive system	Hinge
Belt width	Multiples of $25 \mathrm{~mm}{ }^{(1)}$
Turn radius for curves	2.2 times the belt width
Rod diameter	$\varnothing 8 \mathrm{~mm}$
Retention system	Clip
Rubber hardness grades	Shore A60
Indent	$[37.5]-[62.5]-[87.5] \mathrm{mm}$
Spacing of rubber lines	Multiples of 30 mm, minimum 60 mm

Surface of the belt	Material of the belt	Material of the rod	Belt strength (kg/m)		Temperature range $\left({ }^{\circ} \mathrm{C}\right)$	Available colours in stock
			Straight	Curved		
Flush Grid	PP - Polypropylene	AC - Polyacetal	2,400	-	+1 to +90	[W] - [G]
	PE - Polyethylene		1,520	-	-50 to +65	[N [
	AC - Polyacetal		3,800	-	-40 to +90	[B] - [N]

Colours: [W] White - [G] Grey - [B] Blue - [N] Natural - [O] Black. // The materials and colours that are normally in stock are those above indicated. In special cases in which it is needed a belt in a material or colour different from those above mentioned, you should ask directly to EUROBELT.
${ }^{(1)}$ For a belt with tabs, its width will always be referred to the usable width without taking into account the tabs.

N° of teeth T	\varnothing Pitch	Bore for square shaft		Hub width	Materials
		mm	inch		
11	106.5	40	1,5"	25	Polypropylene
16	153.5	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	1,5"	25	Polyacetal
20	191.5	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	1,5"	25	Stainless steel

SPROCKETS FOR SQUARE SHAFT

We have plastic sprockets for round shaft with and without keyway. We also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

ACCESSORIES [RETAINING RINGS]

INSTALLATION

These rings are placed at every side of the central sprocket to fasten it to the shaft in order to avoid any lateral movements of the belt.

They are manufactured in AISI 316 stainless steel and they are fixed by means of a set screw stuffed in the ring itself.

One sprocket, duly fixed with 2 retaining rings, should be put in the centre. Then you should place the same quantity of sprockets at every side of the central one but without any fixing, as they will absorb the possible belt expansions and contractions.

The same procedure should be carried out in both shafts.

Bore for square shaft	Screws
40	M 6×6
60	M 6×6

The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the belt.

Its non-stick side has ribs that project over the surface to prevent the product from sticking.

Their edges are completely rounded to avoid any damage of the product.

They can be used both in right and in curve sections.
It is possible to cut down the standard height for special applications.

stralght Fl/GHT [STREAMLINE + NO CLING]

To make the fastening and the support of the belt, EUROBELT has designed two types of hold-down profiles with different geometries, but with the same uses and services.

These profiles, with a low coefficient of friction, are placed between the belt and the structure of the conveyor, reducing the wear of the surfaces in contact, which contributes to prolong the life of the belt.

EUROBELT offers all the hold-down profiles in special polyethylenes with very good sliding properties and an excellent resistance to impact.

	Dimensions	Materials
Profiles in L	$40 \times 20 \times 2.000$	Polyethylene
Profiles in U	$20 \times 14 \times 2.000$	

The hold-down profiles must always be placed in all turns to fasten the belt. This fastening will be carried out in different ways depending on the type to be used:

BELT WITHOUT EDGE TAB

The fastening will be made above the upper side of the belt.

BELT WITH EDGE TAB

The fastening will be made over the tab. Thus, the carry way remains free of any interference.

The hold-down profiles must not be in contact with the belt (see the pictures below):

In cases in which there is going to be some manipulation on the belt, the lateral edges should be covered with a protection of 20 mm approximately, as a safety measure.

CONSTRUCTION DATA [CONVEYOR]

HORIZONTAL CONVEYOR

[A] Distance between the sliding surface of the belt and the centre of the shaft.
[B] Distance between the vertical of the shaft and the beginning of the sliding surface.
[C] Distance between the sliding surface of the belt and the support of the return way.
[D] If sprockets are used in the inflexion shaft, do not retain the central one.
[R] This radius must be as big as allowed by the application in order to minimize the wear (min .150 mm).

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

No of teeth T	\varnothing Pitch	A	B max.	C max.
11	106.5	44	50	115
16	153.5	69	65	160
20	191.5	87	75	200

Before designing a radial conveying system consisting of a curve of 360°, two opposite curves in " S ". or circuits without return, etc.. the next conditions must be taken into account:

SERIES E93 can also be used for applications in spiral conveying systems. Its design of flat and rounded edges reduces considerably frictions between the inner curved radius and the drum, getting a smooth power transference from the central drum to the belt, having as a result a saving in energy costs.

Thanks to its design and its technical characteristics, EUROBELT SERIES E93 can be used to make any kind of configuration, giving the appropriate solution to many of your conveying problems.

Some of its main applications are:

- Repose and fermentation belts for bakery.
- Elevating and descending conveyors with minimum inclination.
- Cooling and/or freezing belts, as due to the 47% open area you can obtain a great energy transference.
- Special vertical accumulation tables, with a big capacity of storage in a reduced space, thanks to the spiral configuration and to the materials used by EUROBELT.

In the pictures below, we can see different possible configurations: one only bidirectional spiral (elevating, descending or bidirectional, picture 1). and two spirals (one of them elevating and the other one descending, or bidirectionals, picture 2):

A - Like in the radial applications, the minimum length of the infeed section as well as that of the outfeed one, must be 1.5 times the belt width.

B - The minimum turn radius must be 2.2 times the belt width. Hold-down profiles should be placed all along the spiral in order to make the fastening of the belt.

TABLE OF SPROCKETS AND WEARSTRIPS

Belt nominal width (mm)		Minimum quantity of sprockets per shaft	Minimum quantity of wearstrips	
100	150	1	2	Return way

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:
Minimum quantity $=\frac{\text { Belt width (mm) }}{100 \mathrm{~mm}}$

This amount must always be odd.
To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 230
 mm in the transport way or 300 mm in the return way.

